

The Flight Loads Laboratory (FLL) was constructed at NASA's Dryden Flight Research Center in 1964 as a unique national laboratory to support flight research and tests of aircraft structures. The FLL conducts mechanical-load and thermal studies of structural components and complete flight vehicles in addition to performing calibration tests of vehicle instrumentation for real-time determination flight loads. Mechanical loads and thermal conditions can be applied either separately or simultaneously to represent combined thermal-mechanical load conditions.

The FLL's experienced and skilled technical staff provides expertise in ground and flight test design and operations; load, stress, and thermal analysis; and instrumentation and

measurement systems development. These skills, coupled with a large array of capital equipment and advanced data acquisition and control systems, make the FLL an ideal location to test aerospace structures from subsonic through hypersonic flight regimes.

Characteristics

High bay dimensions	164 ft wide by 120 ft deep by 40 ft high
Mechanical loading	
Channels	Up to 84 channels hydraulic load control
Force capability	Up to 300 000 lb
Thermal testing	
Temperature range	−320 to >3000 °F
System elements	Quartz lamp and graphite heating systems
Capability	Independent zone configuration and control
Structural dynamics testing	Modal survey testing capable, structure testing, and control mode interaction testing

Facility Benefits

- Single facility capable of conducting mechanical, thermal, and structural dynamics research and testing.
- Combined thermal, mechanical, and structural dynamics testing allows for study of the effects of these combined conditions.
- Verification of static or dynamic structural performance at realistic flight temperatures.
- Advanced strain gauge instrumentation capability.
- Elevated temperature modal survey testing.
- Capability to utilize photogammetry techniques for full-field deformation and strain measurements.
- Acoustic emission sensing for damage detection.
- Location allows direct access to Dryden Flight Research Center and Edwards Air Force Base taxiways and runways, as well as Rodgers dry lakebed.

Facility Applications

- Single component testing
- Full aircraft testing
- Thermal, mechanical, and structural dynamics testing
- Wide range of projects supported from X–15 to crew exploration vehicle (CEV)

Contact Information

www.aeronautics.nasa.gov/atp

Thomas Horn

Chief, Aerostructures Branch Dryden Flight Research Center 661–276–2232

E-mail: thomas.j.horn@nasa.gov

Larry Hudson

FLL Chief Test Engineer Dryden Flight Research Center 661–276–3925

E-mail: larry.d.hudson@nasa.gov